
Ruby
Science
The reference for writing fantastic
Rails applications.

Contents

Introduction iii

Contact us v

I Code Smells 1

Long Method 2

Case Statement 4

Type Codes . 4

Shotgun Surgery 7

II Solutions 9

Replace conditional with Null Object 10

truthiness, try, and other tricks . 14

Extract method 15

Replace temp with query . 17

Extract Partial 19

Closing 22

ii

Introduction

Ruby on Rails is almost a decade old, and its community has developed a
number of principles for building applications that are fast, fun, and easy to
change: don’t repeat yourself, keep your views dumb, keep your controllers
skinny, and keep business logic in your models. These principles carry most
applications to their first release or beyond.

However, these principles only get you so far. After a few releases, most appli-
cations begin to suffer. Models become fat, classes become few and large, tests
become slow, and changes become painful. In many applications, there comes
a day when the developers realize that there’s no going back; the application is
a twisted mess, and the only way out is a rewrite or a new job.

Fortunately, it doesn’t have to be this way. Developers have been using object-
oriented programming for several decades, and there’s a wealth of knowledge
out there which still applies to developing applications today. We can use the
lessons learned by these developers to write good Rails applications by applying
good object-oriented programming.

Ruby Science will outline a process for detecting emerging problems in code,
and will dive into the solutions, old and new.

The full book contains three catalogs: smells, solutions, and principles. This
sample contains a few hand-picked chapters from the first two catalogs, pub-
lished directly from the book, allowing you to get a sense for the content, style,
and delivery of the product.

If you enjoy the sample, you can get access to the entire book and sample
application at:

http://www.rubyscience.com

As a purchaser of the book, you also get access to:

• Multiple formats, including HTML, PDF, EPUB, and Kindle.

• A complete example application containing code samples referenced from
the book.

iii

http://www.rubyscience.com

INTRODUCTION iv

• The GitHub repository to receive updates as soon as they’re pushed.

• GitHub issues, where you can provide feedback tell us what you’d like to
see.

• Ask us your toughest Rails questions!

Contact us

If you have any questions, or just want to get in touch, drop us a line at
learn@thoughtbot.com.

v

mailto:learn@thoughtbot.com

Part I

Code Smells

1

Long Method

The most common smell in Rails applications is the Long Method.

Long methods are exactly what they sound like: methods which are too long.
They’re easy to spot.

Symptoms

• If you can’t tell exactly what a method does at a glance, it’s too long.

• Methods with more than one level of nesting are usually too long.

• Methods with more than one level of abstraction may be too long.

• Methods with a flog score of 10 or higher may be too long.

You can watch out for long methods as you write them, but finding existing
methods is easiest with tools like flog:

% flog app lib

72.9: flog total

5.6: flog/method average

15.7: QuestionsController#create app/controllers/questions_controller.rb:9

11.7: QuestionsController#new app/controllers/questions_controller.rb:2

11.0: Question#none

8.1: SurveysController#create app/controllers/surveys_controller.rb:6

Methods with higher scores are more complicated. Anything with a score higher
than 10 is worth looking at, but flog will only help you find potential trouble
spots; use your own judgement when refactoring.

2

CHAPTER 1. LONG METHOD 3

Example

For an example of a Long Method, let’s take a look at the highest scored method
from flog, QuestionsController#create:

def create

@survey = Survey.find(params[:survey_id])

@submittable_type = params[:submittable_type_id]

question_params = params.

require(:question).

permit(:submittable_type, :title, :options_attributes, :minimum, :maximum)

@question = @survey.questions.new(question_params)

@question.submittable_type = @submittable_type

if @question.save

redirect_to @survey

else

render :new

end

end

Solutions

• Extract Method is the most common way to break apart long methods.

• Replace Temp with Query if you have local variables in the method.

After extracting methods, check for Feature Envy in the new methods to see if
you should employ Move Method to provide the method with a better home.

Case Statement

Case statements are a sign that a method contains too much knowledge.

Symptoms

• Case statements that check the class of an object.

• Case statements that check a type code.

• Divergent Change caused by changing or adding when clauses.

• Shotgun Surgery caused by duplicating the case statement.

Actual case statements are extremely easy to find. Just grep your codebase for
“case.” However, you should also be on the lookout for case’s sinister cousin,
the repetitive if-elsif.

Type Codes

Some applications contain type codes: fields that store type information about
objects. These fields are easy to add and seem innocent, but they result in code
that’s harder to maintain. A better solution is to take advantage of Ruby’s
ability to invoke different behavior based on an object’s class, called “dynamic
dispatch.” Using a case statement with a type code inelegantly reproduces
dynamic dispatch.

The special type column that ActiveRecord uses is not necessarily a type code.
The type column is used to serialize an object’s class to the database, so that
the correct class can be instantiated later on. If you’re just using the type

column to let ActiveRecord decide which class to instantiate, this isn’t a smell.
However, make sure to avoid referencing the type column from case or if

statements.

4

CHAPTER 2. CASE STATEMENT 5

Example

This method summarizes the answers to a question. The summary varies based
on the type of question.

app/models/question.rb

def summary

case question_type

when ’MultipleChoice’

summarize_multiple_choice_answers

when ’Open’

summarize_open_answers

when ’Scale’

summarize_scale_answers

end

end

Note that many applications replicate the same case statement, which is a more
serious offence. This view duplicates the case logic from Question#summary,
this time in the form of multiple if statements:

app/views/questions/_question.html.erb

<% if question.question_type == ’MultipleChoice’ -%>

<% question.options.each do |option| -%>

<%= submission_fields.radio_button :text, option.text, id: dom_id(option) %>

<%= content_tag :label, option.text, for: dom_id(option) %>

<% end -%>

<% end -%>

<% if question.question_type == ’Scale’ -%>

<% question.steps.each do |step| -%>

<%= submission_fields.radio_button :text, step %>

<%= submission_fields.label "text_#{step}", label: step %>

<% end -%>

<% end -%>

CHAPTER 2. CASE STATEMENT 6

Solutions

• Replace Type Code with Subclasses if the case statement is checking a
type code, such as question type.

• Replace Conditional with Polymorphism when the case statement is
checking the class of an object.

Shotgun Surgery

Shotgun Surgery is usually a more obvious symptom that reveals another smell.

Symptoms

• You have to make the same small change across several different files.

• Changes become difficult to manage because they hard to keep track of.

Make sure you look for related smells in the affected code:

• Duplicated Code

• Case Statement

• Feature Envy

• Long Parameter List

• Parallel Inheritance Hierarchies

7

CHAPTER 3. SHOTGUN SURGERY 8

Example

Users names are formatted and displayed as ‘First Last’ throughout the applica-
tion. If we want to change the formating to include a middle initial (e.g. ‘First
M. Last’) we’d need to make the same small change in several places.

app/views/users/show.html.erb

<%= current_user.first_name %> <%= current_user.last_name %>

app/views/users/index.html.erb

<%= current_user.first_name %> <%= current_user.last_name %>

app/views/layouts/application.html.erb

<%= current_user.first_name %> <%= current_user.last_name %>

app/views/mailers/completion_notification.html.erb

<%= current_user.first_name %> <%= current_user.last_name %>

Solutions

• Replace Conditional with Polymorphism to replace duplicated case state-
ments and if-elsif blocks.

• Replace Conditional with Null Object if changing a method to return nil

would require checks for nil in several places.

• Extract Decorator to replace duplicated display code in views/templates.

• Introduce Parameter Object to hang useful formatting methods alongside
a data clump of related attributes.

Part II

Solutions

9

Replace conditional with
Null Object

Every Ruby developer is familiar with nil, and Ruby on Rails comes with a full
compliment of tools to handle it: nil?, present?, try, and more. However, it’s
easy to let these tools hide duplication and leak concerns. If you find yourself
checking for nil all over your codebase, try replacing some of the nil values
with null objects.

Uses

• Removes Shotgun Surgery when an existing method begins returning nil.

• Removes Duplicated Code related to checking for nil.

• Removes clutter, improving readability of code that consumes nil.

Example

app/models/question.rb

def most_recent_answer_text

answers.most_recent.try(:text) || Answer::MISSING_TEXT
end

The most recent answer text method asks its answers association for
most recent answer. It only wants the text from that answer, but it must
first check to make sure that an answer actually exists to get text from. It
needs to perform this check because most recent might return nil:

app/models/answer.rb

def self.most_recent

order(:created_at).last

end

10

CHAPTER 4. REPLACE CONDITIONAL WITH NULL OBJECT 11

This call clutters up the method, and returning nil is contagious: any method
that calls most recent must also check for nil. The concept of a missing answer
is likely to come up more than once, as in this example:

app/models/user.rb

def answer_text_for(question)

question.answers.for_user(self).try(:text) || Answer::MISSING_TEXT
end

Again, most recent answer text might return nil:

app/models/answer.rb

def self.for_user(user)

joins(:completion).where(completions: { user_id: user.id }).last
end

The User#answer text for method duplicates the check for a missing answer,
and worse, it’s repeating the logic of what happens when you need text without
an answer.

We can remove these checks entirely from Question and User by introducing a
Null Object:

app/models/question.rb

def most_recent_answer_text

answers.most_recent.text

end

app/models/user.rb

def answer_text_for(question)

question.answers.for_user(self).text

end

CHAPTER 4. REPLACE CONDITIONAL WITH NULL OBJECT 12

We’re now just assuming that Answer class methods will return something
answer-like; specifically, we expect an object that returns useful text. We can
refactor Answer to handle the nil check:

app/models/answer.rb

class Answer < ActiveRecord::Base

include ActiveModel::ForbiddenAttributesProtection

belongs_to :completion

belongs_to :question

validates :text, presence: true

def self.for_user(user)

joins(:completion).where(completions: { user_id: user.id }).last ||
NullAnswer.new

end

def self.most_recent

order(:created_at).last || NullAnswer.new
end

end

Note that for user and most recent return a NullAnswer if no answer can
be found, so these methods will never return nil. The implementation for
NullAnswer is simple:

app/models/null_answer.rb

class NullAnswer

def text

’No response’

end

end

CHAPTER 4. REPLACE CONDITIONAL WITH NULL OBJECT 13

We can take things just a little further and remove a bit of duplication with a
quick Extract Method:

app/models/answer.rb

class Answer < ActiveRecord::Base

include ActiveModel::ForbiddenAttributesProtection

belongs_to :completion

belongs_to :question

validates :text, presence: true

def self.for_user(user)

joins(:completion).where(completions: { user_id: user.id }).last_or_null
end

def self.most_recent

order(:created_at).last_or_null

end

private

def self.last_or_null

last || NullAnswer.new
end

end

Now we can easily create Answer class methods that return a usable answer, no
matter what.

Drawbacks

Introducing a null object can remove duplication and clutter, but it can also
cause pain and confusion:

• As a developer reading a method like Question#most recent answer text,
you may be confused to find that most recent answer returned an in-
stance of NullAnswer and not Answer.

• Whenever a method needs to worry about whether or not an actual answer
exists, you’ll need to add explicit present? checks and define present?

to return false on your null object. This is common in views, when the
view needs to add special markup to denote missing values.

CHAPTER 4. REPLACE CONDITIONAL WITH NULL OBJECT 14

• NullAnswer may eventually need to reimplement large part of the Answer

API, leading to potential Duplicated Code and Shotgun Surgery, which is
largely what we hoped to solve in the first place.

Don’t introduce a null object until you find yourself swatting enough nil values
to be annoying, and make sure you’re actually cutting down on conditional logic
when you introduce it.

Next Steps

• Look for other nil checks from the return values of refactored methods.

• Make sure your Null Object class implements the required methods from
the original class.

• Make sure no Duplicated Code exists between the Null Object class and
the original.

truthiness, try, and other tricks

All checks for nil are a condition, but Ruby provides many ways to check for
nil without using an explicit if. Watch out for nil conditional checks disguised
behind other syntax. The following are all roughly equivalent:

Explicit if with nil?

if user.nil?

nil

else

user.name

end

Implicit nil check through truthy conditional

if user

user.name

end

Relies on nil being falsey

user && user.name

Call to try

user.try(:name)

Extract method

The simplest refactoring to perform is Extract Method. To extract a method:

• Pick a name for the new method.

• Move extracted code into the new method.

• Call the new method from the point of extraction.

Uses

• Removes Long Methods.

• Sets the stage for moving behavior via Move Method.

• Resolves obscurity by introducing intention-revealing names.

• Allows removal of Duplicated Code by moving the common code into the
extracted method.

• Reveals complexity.

15

CHAPTER 5. EXTRACT METHOD 16

Let’s take a look at an example Long Method and improve it by extracting
smaller methods:

def create

@survey = Survey.find(params[:survey_id])

@submittable_type = params[:submittable_type_id]

question_params = params.

require(:question).

permit(:submittable_type, :title, :options_attributes, :minimum, :maximum)

@question = @survey.questions.new(question_params)

@question.submittable_type = @submittable_type

if @question.save

redirect_to @survey

else

render :new

end

end

This method performs a number of tasks:

• It finds the survey that the question should belong to.

• It figures out what type of question we’re creating (the submittable type).

• It builds parameters for the new question by applying a white list to the
HTTP parameters.

• It builds a question from the given survey, parameters, and submittable
type.

• It attempts to save the question.

• It redirects back to the survey for a valid question.

• It re-renders the form for an invalid question.

CHAPTER 5. EXTRACT METHOD 17

Any of these tasks can be extracted to a method. Let’s start by extracting the
task of building the question.

def create

@survey = Survey.find(params[:survey_id])

@submittable_type = params[:submittable_type_id]

build_question

if @question.save

redirect_to @survey

else

render :new

end

end

private

def build_question

question_params = params.

require(:question).

permit(:submittable_type, :title, :options_attributes, :minimum, :maximum)

@question = @survey.questions.new(question_params)

@question.submittable_type = @submittable_type

end

The create method is already much more readable. The new build question

method is noisy, though, with the wrong details at the beginning. The task of
pulling out question parameters is clouding up the task of building the question.
Let’s extract another method.

Replace temp with query

One simple way to extract methods is by replacing local variables. Let’s pull
question params into its own method:

def build_question

@question = @survey.questions.new(question_params)

@question.submittable_type = @submittable_type

end

def question_params

params.

require(:question).

permit(:submittable_type, :title, :options_attributes, :minimum, :maximum)

end

CHAPTER 5. EXTRACT METHOD 18

Next Steps

• Check the original method and the extracted method to make sure neither
is a Long Method.

• Check the original method and the extracted method to make sure that
they both relate to the same core concern. If the methods aren’t highly
related, the class will suffer from Divergent Change.

• Check newly extracted methods for Feature Envy in the new methods
to see if you should employ Move Method to provide the method with a
better home.

• Check the affected class to make sure it’s not a Large Class. Extracting
methods reveals complexity, making it clearer when a class is doing too
much.

Extract Partial

Extracting a partial is a technique used for removing complex or duplicated
view code from your application. This is the equivalent of using Long Method
and Extract Method in your views and templates.

Uses

• Remove Duplicated Code from views.

• Remove Shotgun Surgery by forcing changes to happen in one place.

• Remove Divergent Change by removing a reason for the view to change.

• Group common code.

• Reduce view size and complexity.

Steps

• Create a new file for partial prefixed with an underscore (filename.html.erb).

• Move common code into newly created file.

• Render the partial from the source file.

19

CHAPTER 6. EXTRACT PARTIAL 20

Example

Let’s revisit the view code for adding and editing questions.

Note: There are a few small differences in the files (the url endpoint, and the
label on the submit button).

app/views/questions/new.html.erb

<h1>Add Question</h1>

<%= simple_form_for @question, as: :question, url: survey_questions_path(@survey) do |form| -%>
<%= form.hidden_field :type %>

<%= form.input :title %>

<%= render "#{@question.to_partial_path}_form", question: @question, form: form %>

<%= form.submit ’Create Question’ %>

<% end -%>

app/views/questions/edit.html.erb

<h1>Edit Question</h1>

<%= simple_form_for @question, as: :question, url: question_path do |form| -%>
<%= form.hidden_field :type %>

<%= form.input :title %>

<%= render "#{@question.to_partial_path}_form", question: @question, form: form %>

<%= form.submit ’Update Question’ %>

<% end -%>

First extract the common code into a partial, remove any instance variables,
and use question and url as a local variables.

app/views/questions/_form.html.erb

<%= simple_form_for question, as: :question, url: url do |form| -%>
<%= form.hidden_field :type %>

<%= form.input :title %>

<%= render "#{question.to_partial_path}_form", question: question, form: form %>

<%= form.submit %>

<% end -%>

Move the submit button text into the locales file.

config/locales/en.yml

en:

helpers:

submit:

question:

create: ’Create Question’

update: ’Update Question’

CHAPTER 6. EXTRACT PARTIAL 21

Then render the partial from each of the views, passing in the values for
question and url.

app/views/questions/new.html.erb

<h1>Add Question</h1>

<%= render ’form’, question: @question, url: survey_questions_path(@survey) %>

app/views/questions/edit.html.erb

<h1>Edit Question</h1>

<%= render ’form’, question: @question, url: question_path %>

Next Steps

• Check for other occurances of the duplicated view code in your application
and replace them with the newly extracted partial.

Closing

Thanks for checking out the sample of Ruby Science. If you’d like to get access
to the full content, the example application, ongoing updates, and the ability
to get your questions about Ruby on Rails answered by us, you can pick it up
on our website:

http://www.rubyscience.com

22

http://www.rubyscience.com

	Introduction
	Contact us
	I Code Smells
	Long Method
	Case Statement
	Type Codes

	Shotgun Surgery

	II Solutions
	Replace conditional with Null Object
	truthiness, try, and other tricks

	Extract method
	Replace temp with query

	Extract Partial
	Closing

